If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x-30100=0
a = 3; b = 1; c = -30100;
Δ = b2-4ac
Δ = 12-4·3·(-30100)
Δ = 361201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361201}=601$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-601}{2*3}=\frac{-602}{6} =-100+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+601}{2*3}=\frac{600}{6} =100 $
| 2x–1=–10. | | 19x-11=17x+13 | | 2(8=p)=22 | | 1–2x–1=–10. | | 8=4x-8+24 | | 0=1.5x-2 | | -2v^2+13v-15=0 | | (1/6)x=2 | | 2y+4-4=18 | | 9/7+7m/4=99/28 | | 3(4-2x)=5x+34 | | 3/20=2t/3-t/5 | | Z=2-6i | | 6p+30=4(5p-1)-8 | | -12(x-12)=-9(1=7x | | 8y-16=6(y-1) | | (2k-4)(k+3)=0 | | 8(6-a)=8a+(4-a) | | 27=3c-18-2c | | 6z+4-4z=9 | | 4p=3p+9 | | 21-5+7y=-32 | | 3x-9+8=5x+12 | | -9(u+7)=4u-37 | | 4x=0.375 | | 3x-9+8=12+9-8 | | 9-2f=-f | | 5(2x-2)=10+10 | | −11−5z=6(5z+4) | | 2x+3=(12x+8) | | X/3+4=x/2+3(1/2) | | 10+8x=19x-1 |